
Error Tolerant Plan Recognition: An Empirical Investigation

Swaroop S. Vattam1, David W. Aha2, and Michael W. Floyd3
1NRC Postdoctoral Fellow; Naval Research Laboratory (Code 5514); Washington, DC, USA

2Naval Research Laboratory (Code 5514); Washington, DC, USA
3Knexus Research Corporation, Springfield, VA, USA

{swaroop.vattam.ctr.in, david.aha}@nrl.navy.mil | michael.floyd@knexusresearch.com

Abstract

Few plan recognition algorithms are designed to tolerate
input errors. We describe a case-based plan recognition
algorithm (SET-PR) that is robust to two input error types:
missing and noisy actions. We extend our earlier work on
SET-PR with more extensive evaluations by testing the utility
of its novel action-sequence representation for plans and also
investigate other design decisions (e.g., choice of similarity
metric). We found that SET-PR outperformed a baseline
algorithm for its ability to tolerate input errors, and that
storing and leveraging state information in its plan
representation substantially increases its performance.

1. Introduction

We are developing an intelligent agent to control a robot in

joint human-robot team missions. This robot perceives the

actions of its human teammates, recognizes their plans and

goals, and then selects its actions accordingly. Our plan

recognizer must operate on action information perceived by

lower-level perception that is prone to errors (i.e.,

mislabeled and/or missing actions in the observed action

sequences). Thus, error tolerance is a key design concern for

plan recognition.

We describe the Single-agent Error-Tolerant Plan

Recognizer (SET-PR), a case-based algorithm. Plan

recognition algorithms typically employ a model or library

of plans to recognize an ongoing plan from observed action

sequences. SET-PR’s plan representation (action-sequence

graphs) encodes (1) knowledge about actions performed by

an observed agent, as is normally done, and (2) the

subsequent state. That is, plans in SET-PR’s plan library

contain action-state sequences rather than only action

sequences. To process these, SET-PR performs graph

matching to retrieve candidate plans, and thus must compute

similarity efficiently. Degree sequence similarity metrics

(e.g., Johnson, 1985; Bunke and Shearer 1998; Wallis et al.

2001) can be used for this task, but it is not clear which is

preferable.

In §2 and §3, we describe related work and SET-PR,

respectively. We introduced SET-PR in (Vattam et al. 2014)

and reported its performance at varying levels of input error.

In §4 we extend our empirical study by comparing SET-

Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

PR’s ability to tolerate input errors vs. baselines, and

studying how its plan representation and choice of similarity

function influences its ability to tolerate errors. We found

support for our hypotheses that SET-PR’s action-sequence

graph representation for plans and the inclusion of state

information in these representations increases plan

recognition performance in the presence of input errors.

Finally, we discuss these results in §5 and provide

concluding remarks in §6.

2. Related Work

Several plan recognition algorithms (Sukthankar et al. 2014)

have used consistency-based (e.g., Hong 2001; Kautz and

Allen, 1986; Lesh and Etzioni 1996) or probabilistic (e.g.,

Bui, 2003; Charniak and Goldman, 1991; Goldman et al.

1999; Pynadath and Wellman 2000) approaches. SET-PR

exemplifies a less-studied third approach, namely case-

based plan recognition (CBPR) (Cox and Kerkez 2006;

Tecuci and Porter 2009). Some CBPR algorithms can work

with incomplete plan libraries, incrementally learn plans, or

respond to novel inputs outside the scope of their plan

library using plan adaptation techniques. However, to our

knowledge none have been designed for error-prone inputs,

which is our focus.

Cox and Kerkez (2006) proposed a novel representation

for storing and organizing plans in a plan library, based on

action-state pairs and abstract states. It counts the number of

instances of each type of generalized state predicate. SET-

PR uses a similar representation, but stores and processes

plans in an action-sequence graph. As a result, our similarity

metrics also operate on graphs. Our encoding was inspired

by planning encoding graphs (Serina 2010). Although there

are syntactic similarities among these two types of graphs,

important semantic differences exist; Serina’s graphs

encode a planning problem while ours encode a solution

(i.e., a grounded plan).

Recently, Maynord et al. (2015) integrated SET-PR with

hierarchical clustering techniques to increase its retrieval

speed. Sánchez-Ruiz and Ontañón (2014) instead use Least

Common Subsumer (LCS) Trees for this purpose. In this

paper, we focus on SET-PR’s ability to tolerate input errors

rather than methods for increasing its retrieval speed.

3. SET-PR

When our agent receives a set of observations, it invokes

SET-PR to obtain a hypothesized plan for the observed

agents. SET-PR is given a plan library ∁ (i.e., a set of cases),

where a case is a tuple 𝑐 = (𝜋0, 𝑔0), 𝜋0 is a (grounded) plan,

and 𝑔0 is a goal that is satisfied by 𝜋0's execution.

Each plan is represented as an action-state sequence 𝕤 =
 〈(𝒂𝟎, 𝒔𝟎), … , (𝒂𝒏, 𝒔𝒏)〉, where each action 𝒂𝒊 is a ground

instance of an operator in the planning domain, and 𝒔𝒊 is the

state obtained by executing 𝒂𝒊 in 𝒔𝒊−𝟏. We represent an

action 𝒂 in (𝒂, 𝐬) ∈ 𝕤 as a ground predication 𝒑 =
𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛), where 𝑝 ∈ 𝑷 (a finite set of predicate

symbols), 𝑜𝑖 ∈ 𝑶 (a finite set of typed constants

representing objects), and 𝑡𝑖 is an instance of 𝑜𝑖 (e.g.,

stack(block:A, block:B), on(block:A,

block:B)). A state 𝒔 in (𝒂, 𝐬) ∈ 𝕤 is as a set of facts

{𝒑𝟏, 𝒑𝟐, ⋯ }, where each 𝒑𝒊 is a predication.

Inputs to SET-PR are also represented as action-state

sequences.

3.1 Action-Sequence Graphs

SET-PR uses action-sequence graphs to represent action-

state sequences. A labeled directed graph 𝐺 is a 3-tuple 𝐺 =
(𝑉, 𝐸, 𝜆), where 𝑉 is a set of vertices, 𝐸 ⊆ 𝑉 × 𝑉 is a set of

edges, and 𝜆: 𝑉 ∪ 𝐸 → ℘𝑠(𝐿) assigns labels to vertices and

edges. Here, an edge 𝑒 = [𝑣, 𝑢] ∈ 𝐸 is directed from 𝑣 to 𝑢,

where 𝑣 is the edge’s source node and 𝑢 is the target node;

𝐿 is a finite set of symbolic labels; and ℘𝑠(𝐿), a set of all the

multisets on 𝐿, permits multiple non-unique labels for a node

or an edge (for properties of ℘𝑠(𝐿) please see Serina

(2010)).

The union 𝐺1 ∪ 𝐺2 of two graphs 𝐺1 = (𝑉1, 𝐸1, 𝜆1) and

𝐺2 = (𝑉2, 𝐸2, 𝜆2) is the graph 𝐺 = (𝑉, 𝐸, 𝜆), where 𝑉 =
𝑉1 ∪ 𝑉2, 𝐸 = 𝐸1 ∪ 𝐸2, and

𝜆(𝑥) = {

𝜆1(𝑥), 𝑖𝑓 𝑥 ∈ (𝑉1 ∖ 𝑉2) ⋁ 𝑥 ∈ (𝐸1 ∖ 𝐸2)

𝜆2(𝑥), 𝑖𝑓 𝑥 ∈ (𝑉2 ∖ 𝑉1) ⋁ 𝑥 ∈ (𝐸2 ∖ 𝐸1)

𝜆1(𝑥) ∪ 𝜆2(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition: Given ground atom 𝒑 representing an action

𝒂 or a fact of state 𝒔 in the 𝑘𝑡ℎ action-state pair (𝒂, 𝒔)𝑘 ∈ 𝕤,

a predicate encoding graph is a labeled directed graph

ℇ𝑝(𝒑) = (𝑉𝑝 , 𝐸𝑝, 𝜆𝑝) where:

 𝑉𝑝 = {
{𝐴𝑘𝑝

, 𝑜1 , … , 𝑜𝑛} , if 𝒑 is an action

{𝑆𝑘𝑝
, 𝑜1, … , 𝑜𝑛} , if 𝒑 is a state fact

 𝐸𝑝 =

{
[𝐴𝑘𝑝

, 𝑜1] ∪ ⋃ [𝑜𝑖 , 𝑜𝑗]𝑖=1,𝑛−1;𝑗=𝑖+1,𝑛 , if 𝒑 is an action

[𝑆𝑘𝑝
, 𝑜1] ∪ ⋃ [𝑜𝑖 , 𝑜𝑗]𝑖=1,𝑛−1;𝑗=𝑖+1,𝑛 , if 𝒑 is a state fact

 𝜆𝑝 (𝐴𝑘𝑝
) = {𝐴𝑘𝑝

} ; 𝜆𝑝 (𝑆𝑘𝑝
) = {𝑆𝑘𝑝

} ; 𝜆𝑝(𝑜𝑖) = {𝑡𝑖}

for 𝑖 = 1,… , 𝑛

 𝜆𝑝 ([𝐴𝑘𝑝
, 𝑜1]) = {𝐴𝑘𝑝

0,1} ; 𝜆𝑝 ([𝑆𝑘𝑝
, 𝑜1]) = {𝑆𝑘𝑝

0,1} ;

∀[𝑜𝑖 , 𝑜𝑗] ∈ 𝐸𝑝,

𝜆𝑝([𝑜𝑖 , 𝑜𝑗]) = {
{𝐴𝑘𝑝

𝑖,𝑗} , if 𝒑 is an action

{𝑆𝑘𝑝
𝑖,𝑗} , if 𝒑 is a state fact

As an interpretation of this definition suppose we have a

predication 𝒑 = 𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛). Depending on whether

𝒑 represents an action or a state fact, the first node of the

predicate encoding graph ℇ𝑝(𝒑) is either 𝐴𝑘𝑝
or 𝑆𝑘𝑝

 (labeled

{𝐴𝑘𝑝
} or {𝑆𝑘𝑝

}). Suppose it is an action predicate. 𝐴𝑘𝑝
 is

then connected to the second node of this graph, the object

node 𝑜1 (labeled {𝑡1}), through the edge [𝐴𝑘𝑝
, 𝑜1] (labeled

{𝐴𝑘𝑝
0,1}). Next, 𝑜1 is connected to the third node 𝑜2 (labeled

{𝑡2}) through the edge [𝑜1, 𝑜2] (labeled {𝐴𝑘𝑝
1,2}), then to the

fourth node 𝑜3 (labeled {𝑡3}) through the edge [𝑜1, 𝑜3]

(labeled {𝐴𝑘𝑝
1,3}), and so on. Suppose also the third node 𝑜2

is connected to 𝑜3 through 𝐴𝑘𝑝
2,3, to 𝑜4 through 𝐴𝑘𝑝

2,4, with

appropriate labels, and so on.

Definition: An action-sequence graph of an action-state

sequence 𝕤 is a labeled directed graph ℇ𝕤 =

⋃ (ℇ(𝒂) ⋃⋃ ℇ(𝒑)𝒑∈𝒔)(𝒂,𝒔)∈𝕤 , a union of the predicate

encoding graphs of the actions and state facts in 𝕤.

Space constraints prevent providing more detail. Please

see (Vattam et al. 2014) for examples of action-sequence

graphs and their construction from action-state sequences.

3.2 Case Retrieval

SET-PR matches an input action-sequence graph 𝕤𝒕𝒂𝒓𝒈𝒆𝒕

with plans in the cases of ∁. The case 𝒄 = (𝝅𝟎, 𝒈𝟎) whose

plan 𝒄. 𝝅𝟎 is most similar is retrieved as the recognized plan,

and 𝒄. 𝒈𝟎 is the recognized goal.

To match graphs, we compute their maximum common

subgraph (MCS). Computing the MCS between two or more

graphs is NP-Complete, restricting applicability to only

small plan recognition problems. Alternatively, many

approximate graph similarity measures exist. One class of

such similarity metrics, based on graph degree sequences,

has been used successfully to match chemical structures

(Raymond and Willett 2002).

Below, we describe four degree sequence similarity

metrics that we will test in SET-PR. These metrics, denoted

as sim𝑠𝑡𝑟, compute plan similarity based on the approximate

structural similarity of their graph representations.

Let 𝐺1 and 𝐺2 be the two action-sequence graphs being

compared. First, the set of vertices in each graph is divided

into 𝑙 partitions by label type, and then sorted in a non-

increasing total order by degree1. Let 𝐿1
𝑖 and 𝐿2

𝑖 denote the

sorted degree sequences of a partition 𝑖 in the action-

sequence graphs 𝐺1 and 𝐺2, respectively. An upper bound

on the number of vertices 𝑉(𝐺1, 𝐺2) and edges 𝐸(𝐺1, 𝐺2) of

the MCS of these two graphs can then be computed as:

|mcs(𝐺1,𝐺2)| = 𝑉(𝐺1, 𝐺2) + 𝐸(𝐺1, 𝐺2), where

𝑉(𝐺1, 𝐺2) = ∑𝑚𝑖𝑛(|𝐿1
𝑖 |, |𝐿2

𝑖 |)

𝑙

𝑖=1

𝐸(𝐺1, 𝐺2) =

⌊

∑ ∑

𝑚𝑖𝑛(|𝐸(𝑣1
𝑖,𝑗

)|, |𝐸(𝑣2
𝑖,𝑗

)|)

2

𝑚𝑖𝑛(|𝐿1
𝑖 |,|𝐿2

𝑖 |)

𝑗=1

𝑙

𝑖=1
⌋

where 𝑣1
𝑖,𝑗

 denotes the 𝑗th vertex of the 𝐿1
𝑖 sorted degree

sequence, and 𝐸(𝑣1
𝑖,𝑗

) denotes the set of edges connected to

vertex 𝑣1
𝑖,𝑗

.

 We consider the following four similarity metrics, which

are variations on the above properties.

 J Johnson (Johnson 1985):

𝑠𝑖𝑚𝑠𝑡𝑟(𝐺1, 𝐺2) =
(|mcs(𝐺1,𝐺2)|)

2

|𝐺1| ∙ |𝐺2|

 B Bunke (Bunke and Shearer 1998):

𝑠𝑖𝑚𝑠𝑡𝑟(𝐺1, 𝐺2) =
(|mcs(𝐺1,𝐺2)|)

2

max(|𝐺1|, |𝐺2|)

 W Wallis (Wallis et al. 2001):

𝑠𝑖𝑚𝑠𝑡𝑟(𝐺1, 𝐺2) =
(|mcs(𝐺1,𝐺2)|)

2

|𝐺1| + |𝐺2| − |mcs(𝐺1,𝐺2)|

 S Simpson (Ellis et al. 1993):

𝑠𝑖𝑚𝑠𝑡𝑟(𝐺1, 𝐺2) =
(|mcs(𝐺1,𝐺2)|)

2

min(|𝐺1|, |𝐺2|)

Two plans that are similar in structure can differ

drastically in semantics. For instance, a plan to travel to a

grocery store to buy milk might coincidentally be

structurally similar to a plan to travel to the airport to receive

a visitor. To mitigate this issue, we use a weighted

combination of structural similarity and semantic similarity,

denoted as sim𝑜𝑏𝑗, as our final similarity metric:

sim(𝐺1, 𝐺2) = α sim𝑠𝑡𝑟(𝐺1, 𝐺2) + (1 − α)sim𝑜𝑏𝑗(𝐺1, 𝐺2) ,

where sim𝑜𝑏𝑗(𝐺1, 𝐺2) =
𝑂𝕤∩𝑂𝜋𝑖

𝑂𝕤∪𝑂𝜋𝑖

 is the Jaccard coefficient of the

set of (grounded) objects in 𝐺1 and 𝐺2, and 𝛼 (0 ≤ 𝛼 ≤ 1)

governs the weights associated with sim𝑠𝑡𝑟 and sim𝑜𝑏𝑗.

4. Empirical Study

Our empirical study builds on our earlier pilot study (Vattam

et al. 2014), where we tested SET-PR at varying input error

1The degree of a vertex 𝑣 of a graph is the number of edges that touch 𝑣.

levels but did not compare it to a baseline. Also we did not

compare different variants of SET-PR. In this study, we

investigated the following hypotheses:

H1: SET-PR’s action-sequence graph representation for

plans increases recognition performance in the

presence of input errors.

H2: Including state information in input action sequences

and plans improves error tolerance.

H3: Combining structural and semantic similarity

outperforms using either in isolation.

3.1 Empirical Method

We compared the performance of a baseline algorithm with

three versions of SET-PR, all using J for graph matching.

(We consider the other similarity metrics in §4.)

 Baseline: Inputs and plans contained action sequences

(no state information), treated as symbols (not converted

to a graph representation); matching was computed

using edit distance (no graph matching).

 SET-PR[A,0.5]: Inputs and plans contained action

sequences (no state information), represented as action-

sequence graphs; 𝛼 = 0.5 (equal weights for structural

and semantic similarity).

 SET-PR[AS,0.5]: Inputs and plans contained action,

state sequences, represented as action-sequence graphs;

𝛼 = 0.5.

 SET-PR[AS,0.33]: This is a variant in which 𝛼 = 0.33

(slightly lower weight for structural similarity).

We conducted our experiments in the paradigmatic

blocks world domain because it is simple and permits the

quick automatic generation of a plan library with the desired

characteristics. We used the hierarchal task network (HTN)

planner SHOP2 (Nau et al. 2003) to generate plans for our

library. Planning problems were created by randomly

selecting initial and goal states (ensuring that the goal can

be reached from the initial state), and given as input to

SHOP2. The number of blocks used to generate the plans

ranged from 9 to 12. We used this method to generate 100

plans for our library. The average plan length was 12.48. In

the baseline condition, we stored the generated plan along

with the goal as a case in the case base. In the non-baseline

conditions, the generated plan was converted into an action-

sequence graph (using actions only in SET-PR[A,0.5], and

using actions and states in SET-PR[AS,0.5/0.33]), and

stored along with the goal as a case in the case base.

We used the following plan recognition metrics (Blaylock

and Allen 2005): (1) precision, (2) convergence rate, and (3)

convergence point. To understand these metrics, consider a

plan recognition session in which the recognizer is given 𝑥

input actions, which are streamed sequentially. After

observing each action, the recognizer uses the available

action sequence to query and predict a plan. The first query

will be 〈𝑎1〉, the second 〈𝑎1, 𝑎2〉, and so on until

〈𝑎1, 𝑎2, ⋯ 𝑎𝑥〉 (in SET-PR[AS] these will be action-state

sequences). Each session consists of 𝑥 queries and

predictions. Precision reports the number of correct

predictions divided by total predictions for a single session.2

Convergence is true if the correct plan is predicted by the

end of the session and false otherwise. If a correct

prediction is followed by an incorrect prediction at any point

in the observation session, the convergence flag will be reset

to false. Convergence rate is the percentage of sessions that

converged to true. If a session converges, convergence point

reports the number of actions after which the session

converged to the correct plan divided by the total number of

actions. Convergence point is averaged only for those

sessions that converge. Lower values for convergence point

indicate better performance, whereas higher values for

convergence rate and precision indicate better performance.

 We evaluated the plan recognition metrics using the

leave-one-in (Aha and Breslow 1997) testing strategy as

follows. For each randomly selected case 𝑐 = (𝜋0, 𝑔0) ∈ ∁,

we copied plan 𝜋, randomly distorted its action-sequence

〈(𝑛𝑢𝑙𝑙, 𝑠0), (𝑎1, 𝑠1), … , (𝑎𝑔, 𝑠𝑔)〉 to introduce a fixed and

equal amount of mislabeled and missing error (for

mislabeled, a specified percentage of actions in 𝜋 was

randomly chosen, and each was replaced with another action

randomly chosen from the domain; for missing, a specified

percentage of actions was randomly chosen, and each was

replaced with an unidentified marker ‘*’.). This distorted

plan was used as an incremental query to SET-PR (i.e.,

initially with only its first action, state pair, and then

repeatedly adding the next such pair in its sequence). The

error levels tested were {10%, 20%, 30%, …, 90%}.

3.2 Results

Figure 1 plots performance versus error levels across three

metrics. For convergence rate, SET-PR[AS,0.5] and SET-

PR[AS,0.33] outperformed Baseline and SET-PR[A,0.5].

Baseline’s convergence fell sharply between 10% and 20%

error rate, while SET-PR[A,0.5]’s degradation was more

gradual, though it reached low levels at 40%. SET-

PR[AS,0.5] and SET-PR[AS,0.33] maintained a

convergence rate of 35% to 50% even at higher error rates.

 For average precision, in the absence of any error,

Baseline’s precision was higher than the SET-PR variants.

This is because SET-PR’s approximate graph matching

technique used can assign the same score to multiple plans

with minor differences, in which case a random plan was

selected. This can reduce average precision. With greater

plan diversity in the library, we conjecture the performance

of SET-PR will be similar to that of the Baseline in the zero

2 This should not be confused with typical precision/recall definitions
involving false positives and false negatives.

error case. However, in the presence of error Baseline’s

precision fell sharply. Again, SET-PR[AS,0.5] and SET-

PR[AS,0.33] performed best for higher error levels.

 For average convergence point, Baseline recorded the

lowest values, but that is not indicative of its superior

performance because its convergence rate is low even in the

10% input error condition (the converged set had too few

data points). Similarly, the convergence point for SET-

PR[A,0.5] does not afford meaningful comparison beyond

the 20% error rate. Only SET-PR[AS,0.5] and SET-

PR[AS,0.33] can be meaningfully compared in this test, and

SET-PR[AS,0.33] performed better at all error rates.

For convergence rate and precision, Baseline performed

comparatively poorly at all non-zero error levels,

particularly when using action-state sequence

representations in SET-PR, lending some support to H1.

These results also lend support to H2; actions-only SET-

Figure 1: Performance of Baseline and three variations of SET-

PR with a varying input error rate using three metrics.

PR[A,0.5] was outperformed by the other two variants with

state information on all three metrics at all non-zero error

levels (with the exception of convergence point at high error

levels characterized by a low convergence rate).

 Figure 2 displays the performance of SET-PR[AS] with

levels of 𝛼 ranging from 0.0 (purely semantic similarity) to

1.0 (purely structural) in four increments. This shows that

using only semantic similarity performs well on two metrics

but poorly on a third, while purely structural similarity

performs poorly for two of the metrics. The best overall

performance was attained when 𝛼 = 0.33 taking, all three

parameters into account. This lends support to H3.

4. Discussion

Our results for H2 suggest that plan representations rich in

state information, such as SET-PR’s action-state sequences,

enable more informed predictions because states capture the

context of actions. Plan recognition techniques that rely

solely on actions exhibit brittleness even when a small

proportion of input actions are mislabeled or missing. Our

results for H3 suggests that SET-PR is sensitive to 𝛼

(structural vs semantic similarity), but the best observed

value of 𝛼 = 0.33 could be domain specific. In future work

with other domains, we will assess the extent to which SET-

PR is sensitive to 𝛼.

Our study in §3 may be influenced by several factors (e.g.,

the similarity metric that was used). In an exploratory

analysis, we examined whether J was an appropriate choice

by testing all four similarity metrics using SET-

PR[AS,0.33]. As Figure 3(a) shows for convergence rate,

while performance deteriorates with increasing levels of

input error, J performs on par with W, and outperformed S

substantially. Similarly, we found that J, W, and B

outperformed S on precision, while S performed well on

convergence point, though this is not indicative of its

superior performance because its convergence rate was low

beyond the 20% error rate (i.e., too few data points in the

converged set to derive a trend). This suggests that, for these

studies, J is an appropriate choice.

However, a factorial study of other design choices would

reveal a more complicated story. For example, Figure 3(b)

plots the convergence rate for the same algorithms but with

input errors containing only one type of error (missing

actions). In contrast to using the other similarity metrics, the

convergence rate of SET-PR[AS,0.33] for S does not

deteriorate with higher error levels. Our conjecture is that S

is more sensitive to the size of the MCS, and theoretical

Figure 2: Performance of SET-PR[AS], varying from purely

semantic (𝛼 = 0) to purely structural (𝛼 = 1) similarity.

Figure 3: Convergence rate of SET-PR[AS,0.33] with different

degree sequence similarity metrics, given (a) both mislabeled

and missing actions, and (b) only missing actions.

analyses may reveal that the MCS (as a percentage of graph

size) of two randomly-sampled graphs, for higher error

rates, is much higher when the errors are constrained to

missing actions. We will test for this in future work, and

whether this behavior is limited to our current domain and

plan libraries.

5. Summary and Future Work

We described SET-PR, a case-based approach to the

problem of plan recognition that can tolerate mislabeled and

missing actions in the input action sequences. We

highlighted SET-PR’s case representation (action-sequence

graphs) and SET-PR’s similarity function, which combines

degree sequences similarity and semantic similarity for

matching action-sequence graphs. We described an

empirical study where we found evidence to support our

hypotheses that SET-PR’s action-sequence graph

representation for plans and the inclusion of state

information in these representations increases plan

recognition performance in the presence of input errors. We

also found that combining structural and semantic similarity

outperforms using either in isolation.

 For future work, we will conduct a factorial study of our

design choices, with the objective of explaining some of the

trends that we observed (e.g., why SET-PR[AS,0.33] with

Simpson’s similarity metric maintained a high convergence

rate even at higher levels of errors). We will also integrate

and test SET-PR in other domains, including a human-robot

teaming domain. We will also compare SET-PR’s

performance with that of other state-of-the-art plan

recognizers in the presence of input errors. Finally, we will

examine more sophisticated graph similarity metrics (e.g.,

graph kernels) and compare them against the simple degree

sequence metrics that SET-PR currently uses.

Acknowledgements

Thanks to OSD ASD (R&E) for sponsoring this research.

The views and opinions in this paper are those of the authors

and should not be interpreted as representing the official

views or policies of NRL or OSD.

References

Aha, D.W. & Breslow, L.A. (1997). Refining conversational case
libraries. Proceedings of the Second International Conference
on CBR (267–278). Providence, RI: Springer.

Blaylock, N., & Allen, J. (2005). Recognizing instantiated goals
using statistical methods. In G. Kaminka, D.V. Pynadath, &
C.W. Geib (Eds.) Modeling others from observations: Papers
from the IJCAI Workshop.

Bui, H. (2003). A general model for online probabilistic plan
recognition. Proceedings of the Eighteenth International Joint

Conference on Artificial Intelligence (pp. 1309–1315).
Acapulco, Mexico: Morgan Kaufmann.

Bunke, H., & Shearer, K. (1998). A graph distance metric based on
the maximum common subgraph. Pattern Recognition, 19(3),
255-259.

Charniak, E., & Goldman, R. (1991). A probabilistic model of plan
recognition. Proceedings of the 9th National Conference on AI
(pp. 160-165). Anaheim, CA: AAAI Press.

Cox, M. T., & Kerkez, B. (2006). Case-based plan recognition with
novel input. Control and Intelligent Systems, 34(2), 96-104.

Ellis, D., Furner-Hines, J., & Willett, P. (1993). Measuring the
degree of similarity between objects in text retrieval systems.
Perspectives in Information Management, 3(2), 128-149.

Goldman, R.P., Geib, C.W., & Miller, C.A. (1999). A new model
of plan recognition. Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence (pp. 245-254). Bled,
Slovenia: Morgan Kaufmann.

Hong, J. (2001). Goal recognition through goal graph analysis.
Journal of Artificial Intelligence Research, 15, 1-30.

Johnson, M. (1985). Relating metrics, lines and variables defined
on graphs to problems in medicinal chemistry. NY: Wiley.

Kautz, H., & Allen, J. (1986). Generalized plan recognition.
Proceedings of the Fifth National Conference on Artificial
Intelligence (pp. 32-37). Philadelphia, PA: Morgan Kaufmann.

Lesh, N., & Etzioni, O. (1996). Scaling up goal recognition.
Proceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning (pp. 178-189).
Cambridge, MA: Morgan Kaufmann.

Maynord, M., Vattam, S. & Aha, D.W. (2015). Increasing the
runtime speed of case-based plan recognition. In Proceedings of
the 28th FLAIRS Conference. Hollywood, FL: AAAI Press.

Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu,
D., & Yaman, F. (2003). SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20, 379-404.

Pynadath, D.V., & Wellman, M.P. (2000). Probabilistic state-
dependent grammars for plan recognition. Proceedings of the
Conference on Uncertainty in Artificial Intelligence (pp. 507–
514). San Francisco, CA: Morgan Kaufmann.

Raymond, J. W., & Willett, P. (2002). Maximum common
subgraph isomorphism algorithms for the matching of chemical
structures. Journal of Computer-Aided Molecular Design, 16,
521–533.

Sánchez-Ruiz, A.A., & Ontañón, S. (2014). Least common
subsumer trees for plan retrieval. Proceedings of the Twenty-
Second International Conference on Case-Based Reasoning
(pp. 405-419). Cork, Ireland: Springer.

Serina, I. (2010). Kernel functions for case-based planning.
Artificial Intelligence, 174(16), 1369-1406.

Sukthankar, G., Goldman, R., Geib, C., Pynadath, D., Bui, H.
(2014). An introduction to plan, activity, and intent recognition.
In G. Sukthankar, R.P. Goldman, C. Geib, D.V. Pynadath, and
H.H. Bui (Eds.) Plan, Activity, and Intent Recognition.
Philadelphia, PA: Elsevier.

Tecuci, D., & Porter, B.W. (2009). Memory based goal schema
recognition. In Proceedings of the Twenty-Second International
Florida Artificial Intelligence Research Society Conference.
Sanibel Island, FL: AAAI Press.

Vattam, S., Aha, D.W. & Floyd, M. (2014). Case-based plan
recognition using action sequence graphs. Proceedings of the
Twenty-Second International Conference on Case-Based
Reasoning (pp. 495-510). Cork, Ireland: Springer.

Wallis, W. D., Shoubridge, P., Kraetz, M., & Ray, D. (2001).
Graph distances using graph union. Pattern Recognition Letters,
22(6), 701-704.

